Solid-state quantum information science using defects in semiconductors

Hosung Seo

In recent years, remarkable advances have been reported in the development of defect spin quantum bits (qubits) in semiconductors for solid-state quantum information science and technology. Promising spin qubits include the nitrogen-vacancy center in diamond, dopants in silicon, and the silicon vacancy and divacancy spins in silicon carbide. In this talk, I will highlight some of our recent efforts devoted to defect spin qubits in wide-gap semiconductors [1-4]. In the first part of the talk, I will explain basic concepts of using point defects in semiconductors as qubits and their applications. Then, I will describe our recent combined theoretical and experimental study on remarkably robust quantum coherence found in the divancancy qubits in silicon carbide [2]. We used a quantum bath model combined with a cluster expansion method to identify the microscopic mechanisms behind the unusually long coherence times of the divacancy spins in SiC. I will also discuss progress and challenges in computational design of new spin defects for use as qubits in piezoelectric crystals such as AlN and SiC, including a new defect design concept using large metal ion - vacancy complexes [1]. Our first principles calculations include DFT computations using recently developed self-consistent hybrid density functional theory and large-scale many-body GW theory.

[1] H. Seo, H. Ma, M. Govoni, and G. Galli, submitted (2017).

[2] H. Seo, A. L. Falk, P. V. Klimov, K. C. Miao, G. Galli, and D. D. Awschalom, Nature Communications 7, 12935 (2016).

- [3] H. Seo, M. Govoni, and G. Galli, Scientific Reports 6, 20803 (2016).
- [4] W. F. Koehl, H. Seo, G. Galli and D. D. Awschalom, MRS Bulletin 40, 1146 (2015).