Problem Set 3.7

1. Find $y^{\prime}=\frac{d y}{d x}=D_{x}(y)$ by implicit differentiation.
(1) $x y+2 x+3 y^{2}=4$
(2) $\sin (x y)=y^{2}$
2. (1) Find y^{\prime} and $y^{\prime \prime}$ at $(1,1)$ if $x^{2}+x y+y^{2}=3$
(2) Find the equation of the tangent line to the curve $x^{2}+x y+y^{2}=3$ at $(1,1)$.

Problem Set 3.10

Derivatives

$D_{x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$	$D_{x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}$
$D_{x}(\sinh x)=\cosh x$	$D_{x}(\cosh x)=\sinh x$

3. Find the derivative of the function.
(1) $y=\sin ^{-1}(2 x+1)$
(2) $y=\ln \left(\tan ^{-1} x\right)$

Problem Set 3.11

Let $y=f(x)$ and x change from a to $a+\Delta x$ actual change : $\Delta y=f(a+\Delta x)-f(a)$
differential : $d y=f^{\prime}(a) d x=f^{\prime}(a) \Delta x$
4. Find Δy and $d y$ where $y=2 x-x^{2}, x=2$,
$\Delta x=d x=-0.3$

At $x=a$,

linear approximation : $L(x)=f(a)+f^{\prime}(a)(x-a)$
5. Find the linear approximation to the function $f(x)=\sin x$ at $x=\frac{\pi}{6}$.

Approximation $f(a+\Delta x)$ where $\Delta x=d x$ using;
a differential : $f(a+\Delta x) \approx f(a)+f^{\prime}(a) d x$
a linear approximation : $f(a+\Delta x) \approx L(a+\Delta x)$
6. Approximate $\sqrt{99.8}$.
(1) Find $f(x)$ and a point a near 99.8 to approximate $\sqrt{99.8}$.
$f(x)=$
$a=$
(2-1) [method1] Use a differential to approximate $\sqrt{99.8}$.
(2-2) [method2] Use a linear approximation to approximate $\sqrt{99.8}$.

