한국화학연구원 박사후연구원 및 YS포닥 채용공고

우리나라 과학기술 발전을 이끌고 있는 국책연구기관인 한국화학연구원은 쾌적한 근무환경과 우수한 연구인력 및 인프라를 기반으로 국가 화학산업을 선도하는 세계일류 공공연구기관으로 도약하기 위해 노력하고 있습니다. 한국화학연구원과 미래를 함께 할 창의적이고 도전적인 인재를 모집합니다.

1. 채용분야

구분	본부	부서	모집분야	관련 전공	세부업무내용 (직무기술서)		근무지
			분리막 제조 및 특성평가	화학, 화학공학, 고분자, 환경			
			습·건식 나노입자· 유가금속회수·분리기술	화학,화학공학,재료, 고분자,금속,촉매			
			생분해성고분자 상용화제/커플링제 기술	화학, 화학공학, 고분자,유기합성			
		그린탄소 연구센터	폐플라스틱 화학적 전환을 위한 촉매 및 공정 기술 개발	화학공학, 화학 공업화학, 환경공학,	첨부 1		
			바이오매스 전환 친환경 촉매 기술 개발	화학, 화학공학, 공업화학			
			바이오매스 촉매전환 기술	화학, 화학공학, 재료			
	변소용합 학사후 리하고제 연구센터	환경자원 연구센터	화학적 수소 에너지 전환, 저장, 추출	화학, 화학공학, 기계	첨부 2		
		C1 7 L 人	전기화학 촉매 및 반응기술 개발	화학공학, 화학, 재료, 신소재	점부 5 -		
박사후 연구원		탄소융합 연구센터	불균일계 촉매 개발 또는 반응공정 개발	화학, 화학공학, 고체촉매		19명	대전
	연구본부		탄소소재 연구개발	화학, 화학공학		100	41 -
		석유화학촉매 연구센터	폐플라스틱 업싸이클링 촉매 기술 개발	화학공학, 환경공학, 화학, 에너지공학			
			에너지 저감형 흡착 신소재 기술 개발	화학공학, 화학, 환경공학, 에너지공학			
			암모니아 합성 반응용 촉매, 반응시스템 개발	화학공학			
			탄소중립형 촉매 반응 공정 기술 개발	화학 공학, 공정 시스템, 반응 공학			
		공정기반 연구센터	신규 에너지 저감형 유기산 분리정제 공정기술 개발	화학공학, 분리공정, 에너지공학			
			화학 산업 디지털 전환 기술 개발	화학공학, 기계공학, 전기공학, 재료 공학, 에너지 공학		,	
		탄소중립 화학공정 실증센터	기초화학 제품 생산 및 CCU 탄소중립 공정 개발	화학공학	첨부 6		

			5G용 PCB 도전소재 개발 (나노입자, 잉크, 표면개질, 프린팅공정)	재료, 신소재, 화학, 화학공학			
		박막재료	양자점 소재 및 소자 개발	재료, 신소재, 화학, 화학공학			
			극자외선 리소그래피용 무기화합물 전구체 개발	무기화학, 유기화학 유기금속화학,	첨부 7		
		연구센터	반도체용 전구체 개발	유기금속화학			
			나노소재 합성 및 복합화, 나노소재 패턴 및 소자 응용	화학, 물리, 재료, 화학공학, 기계			
			반도체 디스플레이용 박막 공정 및 소자 개발	재료공학, 전자 공학, 화학공학			
			에너지-환경 및 센서용 고분자 소재	화학, 공업화학, 고분자화학, 화학공학, 재료공학			
			고기능 고분자 소재	화학, 공업화학, 고분자화학, 화학공학, 재료공학		27명	대전
			에너지 저장소자용 고분자 복합소재 및 나노구조화 연구	화학, 화학공학, 재료공학, 고분자공학, 에너지공학	첨부 8 첨부 9		
		연구센터 ************************************	스마트 모빌리티용 고분자 소재 합성 및 소자화 연구	고분자, 화학, 화학공학, 재료			
박사후	화학소재		기능성 고분자 중합 및 물성 분석-제어 기술 개발	고분자공학, 물리, 화학공학, 신소재공학, 고분자 화학, 고분자			
	연구본부		차세대 이차전지용 고안정성 바인더 및 분리막 연구	화학, 화학공학, 재료공학, 에너지공학, 고분자공학			
			고분자 합성, 구조 제어 및 응용 연구	고분자, 화학, 재료, 신소재			
		계면재료화학 공정연구센터	불소화학소재개발	화학공학, 공업화학, 고분자공학			
			차세대 수전해용 이온교환막 개발	에너지, 화학, 유기소재, 고분자, 화학공학			
			유·무기 반도체 소재 개발	화학, 물리, 전기/전자, 재료, 에너지 공학			
			고분자/나노카본 복합 소재 개발	화학, 전기/전자, 재료, 에너지 공학			
			고효율 페로브스카이트 태양전지 제작	화학, 재료공학			
		에너지소재 연구센터	수전해 및 바나듐배터리 소재	화학, 고분자, 공업화학, 화학공학, 재료공학	첨부 10		
		연구센터	수전해, 전기화학적 환원 (CO2, N2)장치용 촉매/ 전국 및 MEA 제조 평가	화학, 화학공학, 신소재,고분자			
			세라믹 합성 및 물성 분석 에너지저장변환용 핵심	재료공학, 화학 화학, 화학공학,			
			소재 및 소자	재료			
			유기반도체 소자 개발	화학, 화학공학. 고분자, 반도체, 에너지공학			

			친환경 양자점 소재 개발	화학, 화학공학, 재료공학			
	화학소재 연구본부	에너지소재 연구센터	유기 소재 합성	화학, 화학공학, 고분자	첨부 10	27명	
			에너지용 고분자 소재	화학, 공업화학, 고분자화학, 화학공학, 재료공학			
		정보융합신약 연구센터	표적 단백질 분해 기술을 활용 신약 개발 연구	유기, 의약화학	첨부 11		
		신약기반기술 연구센터	단백질 구조 및 구조기반 치료제 개발	구조생물학	첨부 12		
		항바이러스 치료제 개발 의약화학	의약화학				
			신변종 바이러스 치료제 플랫폼 구축	생화학, 바이러스학, 분자세포생물학			
	의액H이오 연구본부	감염병치료제	항바이러스제 연구개발	생명과학, 수의학, 바이러스학	첨부 13	8명	대전
		연구센터	재조합 신변종 바이러스 시스템 구축	생화학, 분자세포생물학, 바이러스학		점무 13	
			저분자 치료제 (항바이러스제) 후보물질 합성 및 개발	유기화학, 의약화학			
		친환경신물질 연구센터	신물질 합성	화학, 유기화학, 의약화학	첨부 14		
		바이러스 진단팀	생체분자 검출	생명과학, 생화학, 면역학	첨부 15		
박사후	CEVI 융합연구단	바이러스	신종바이러스 예방 백신 개발 및 바이러스 기초 연구	분자생물학, 바이러스학, 면역학	첨부 16	3명	
연구원		예방팀	신변종 바이러스 예방 백신 개발 및 면역 반응 연구	면역학, 생명공학, 분자세포생물학, 바이러스학, 수의학	<u> </u>		
			기능성 고분자 기반 스마트 코팅 소재	고분자, 유기합성			
			고기능 고분자소재 개발 특수 단량체 및 고분자 개발	화학, 고분자, 재료 하학 고분자 재료			
		정밀화학융합	기능성 광경화 소재 개발	유기합성, 고분자	첨부 17		
		기술연구센터	유기합성 및 나노입자 합성, 표면화학	화학, 화학공학, 고분자	OT 17		
			기능성 유기 재료 합성	유기 합성, 재료			
			자극 응답 고분자 합성 및 물성 분야	고분자 공학			
	정밀비이오		바이오매스 활용 기능성 소재 개발	화학, 화학공학, 재료공학, 환경재료학			
	화학 연구본부		생물학적 기반 화장품 , 정밀화학소재의 대량생산 및 플라스틱 업싸이클링 기술 개발	대시공학, 생물화학공학, 효소공학, 생물공학, 분자생물학, 미생물학, 식품공학		15명	울산
		비이어리하	나노섬유 기반 기능성 응용제품 개발	고분자, 생체재료			
		하이도 외학 연구센터 변소중립을 위한 고분자 진소재 개발 식품공학, 신소재 공학	바이오화학 연구센터	첨부 18			
			바이오매스 분획 및 기능성 소재 개발 연구	환경재료공학, 화학공학, 식품공학			
			대사공학/합성생물학 기반 바이오화합물 생산균주 개발	생명공학, 대사공학, 합성생물학, 분자생물학, 미생물학			

		화학안전 연구센터	화학제품 노출모델/평가기술 연구	환경분석, 분석화학, 환경보건, 노출평가	첨부 19		
박사후 연구원	화학플랫폼 연구본부	화학소재	유연소자 / 에너지소자용 고기능 코팅 필름	화학공학, 고분자, 신소재, 화학, 에너지공학	원보 20	4명	
		솔루션센터	기능성 화학 소재 물성 모델링 및 유동/구조 해석	화학공학, 고분자가공, 기계공학	첨부 20		대전
	연구전략 본부	중소기업 지원실	카이네이즈 저해를 통한 신약 후보물질 개발	유기합성, 의약화학	첨부 21	1명	
		l	소계			77명	
		C1가스.탄소 융합연구센터	저활용 화학자원 밸류업을 위한 친환경 공정기술 개발 (불균일계 촉매 개발 또는 반응공정 개발)	화학, 화학공학, 촉매	첨부 22	1명	
	화학소재 연구본부	박막재료 연구센터	2차원 소재 합성 및 응용소자 개발	재료. 전기전자, 물리	첨부 23	1명	
YS 포닥		연구본부	에너지소재 연구센터	에너지소자용 유/무기 나노복합소재 연구	화학, 화학공학, 고분자공학, 에너지공학	첨부 24	1명
	의액비이오 연구본부		항생제 내성균 극복을 위한 신규 항생제 개발	유기합성, 천연물합성, 의약화학, 미생물학, 분자생물학, 생물학	첨부 25	1명	
	-1517기7	를 들LOLT!	데이터 과학 및	화학, 컴퓨터공학,			
	화학플랫폼 연구본부	화학안전 연구센터	인공지능 기반 위해성	전산통계, 환경,	첨부 26	1명	
		근 1 끈니	예측모델 개발 연구	생명공학			
			소계			5명	
			총계			82명	

2. 근무조건

구분	근무조건
	• 근무시간 : 평일 09:00 ~ 18:00, 주 5일(40시간) 근무, 선택적 근로시간제 운영
	• 연수기간 : 1년 이내 단위로 체결
박사후연구원	※ 박사학위 취득 후 5년 차에 수행하는 과제의 단계별/연차별 종료일까지 재계약 가능
	단, 참여과제 종료 또는 연수평가 결과에 따라 재계약하지 않을 수 있음
	• 급여조건 : 연봉 약 5천만원 ~ 6천만원(경력에 따라 산정)
	• 근무시간 : 평일 09:00~18:00, 주 5일(40시간) 근무, 선택적 근로시간제 운영
٧٥π٢١	• 연수기간 : 1년 단위 체결(연수평가를 통해 다음 연차 갱신여부 결정, 최대 2년)
YS포닥	※ 2년 경과 후 연수평가 결과 및 연구실 사정에 따라 추가연수 가능
	• 급여조건 : 연봉 약 5천만원 ~ 6천만원(경력에 따라 산정)

3. 지원자격 및 우대사항

구분	지원자격 및 우대사항
공통	[지원자격] - 국가공무원법 제33조(결격사유) 및 인사규정 제22조(결격사유)에 해당되지 않는 자(결격사유 예시: 법률에 의하여 공민권이 정지 또는 박탈된 자, 병역의 의무를 기피한 사실이 있는 자, 신체검사 결과 채용실격으로 판정된 자, 다른 공공기관에서 부정한 방법으로 채용된 사실이 적발되어 채용이 취소된 자, 부패방지 및 국민권익위원회의 설치와 운영에 관한 법률 제82조에 따른 취업 제한 적용을 받는 자 등) - 해외여행에 결격사유가 없는 자[우대] - 장애인(5% 가점), 여성과학기술인은 관계법령 등에 따라 우대 - 국가보훈대상자 등 취업지원대상자(5/10%)는 관계법령에 따라 3인 이하 모집분야의 경우 가점 미부여(단, 응시자 수가 선발예정인원과 같거나 그보다 적은 경우에는 부여)
박사후 연구원	[지원자격] - 임용시점 기준, 모집분야 박사학위 취득 후 5년 이내인 자 또는 3개월 이내 박사학위 취득예정자 ※ 졸업예정자의 경우 학위취득(졸업) 예정증명서 제출이 가능한 자에 한하며 취득예정일에 학위취득을 하지 못할 시 합격을 무효로 함 - 남성의 경우 병역필 또는 면제자(임용시점 기준) ※ 전문연구요원으로 복무중인 경우 전직 요건을 갖춘 자는 지원 가능
YS포닥	[지원자격] - 대한민국 국적 보유자 - 임용시점 기준, 모집분야 박사학위 취득 후 5년 이내인 자 또는 3개월 이내 박사학위 취득예정자 ※ 졸업예정자의 경우 학위취득(졸업) 예정증명서 제출이 가능한 자에 한하며 취득예정일에 학위취득을 하지 못할 시 합격을 무효로 함 - 남성의 경우 병역필 또는 면제자(모집공고일(2022.06.23.) 기준) - 연내 근무시작 가능자 [배제대상] - 임용시점 기준 취업상태인 자 ※ 확인방법 : 홈페이지(www.ei.go.kr) → 고용보험 가입 이력 조회 → 피보험자격 이력내역서 - 「병역법」에 의한 보충역(전문연구요원 등) 복무 중인 자

4. 채용전형

가. 전형 방법

모집 분야	1차	2차
공통	서류심사	면접심사

- * 1차 전형 합격자에 한하여 2차 발표면접 전형 실시
- ** 2차 발표면접 주제는 1차 전형 합격자에 한해 개별 통보
- *** 최종 합격자 발표는 2022.07.29.(금) 이후 예정 (전형일정 및 합격자 발표 시기는 연구원 사정에 따라 변경될 수 있음)

나. 전형 세부내용

전형 절차	내용			
) 모집분야 적합성, 직무성과 및 경력 기반으로 개인별 전문역량 평가			
1차 전형	- 전형시기 : 7월 중			
(서류심사)	- 평가항목 : 전공(모집)분야 적합성, 직무(연구)성과 질·양 및 직무(연구)활동경력			
	- 합격기준(배수) : 평균점수 70점 이상 고득점자 순(선발예정 인원의 3배수 이내)			
	○ 직무활동경력 및 업무계획 발표를 통해 개인별 전문역량 평가			
	- 전형시기 : 7월 중			
2차 전형	- 실시방법 : 업무수행 계획 등 발표 및 질의응답(20분 이내)			
(면접심사)	- 평가항목 : 전문지식, 직무 적합성, 업무추진능력, 인성 및 소양			
	- 합격기준(배수) : 평균점수 70점 이상 고득점자 순			
	* 결원 발생에 대비하여 예비합격자를 둘 수 있음(선발예정인원의 이내)			
최종합격자 발표예정일	○ 2022.07.29.(금) 이후			
임용예정일	○ 2022.08.16.(화) 이후			

^{*} 상기 일정은 전형 진행 상황에 따라 변경될 수 있음

5. 제출서류

가. 필수 제출서류

	구분	내용	부수	비고
1	응 시 원 서	 전산입력 * 추후 제출서류(졸업증명서 등)는 전산에 등록하지 않습니다. 	1부	· 기본사항, 자기소개서 등
2	학위 논문 요약	• 전산입력(PDF 파일 업로드) • 해당자에 한하며 학위별 A4 3매 이내 제출	1부	· 석사학위 이상 (자유형식)
3	YS사업 참여자 자 격 확 인 서	∘ YS포닥 지원자에 한함 ∘ 제공 양식에 작성	1부	• 기타 첨부서류 항목에 업로드

나. 추후 제출서류 ※ 2차 전형 시 제출(서류심사 합격자에 한함)

* 아래 제출서류는 응시원서의 기재사항 확인을 위한 목적이며 면접위원에게 제공되지 않습니다.

	구분	내용	부수	비고
1	졸업/학위(예정)증명서	· 해당자에 한함 · 대학원 졸업자는 대학 졸업(학위)증명서 포함	각 1부	
2	성 적 증 명 서	해당자에 한함대학원 졸업자는 대학 성적증명서 포함	각 1부	
3	경력(재직)증명서/지격증 시본	• 해당자에 한함	각 1부	• 연구실적 증방자료: 각 1장씩 제출 - 출판된 논문의
4	연구실적 증빙자료	• 해당자에 한함(기 제출내역의 증빙자료)	각 1부	Abstract가 기재된 페이지 - 특허실적 중
5	주 민 등 록 초 본	• 해당자(남성)에 한함(병역사항 기재분)	1부	발명자/발명내용 요약 사항이 기재된 페이지
6	장 애 인 등 명 서 취업지원대상증명서	• 해당자(장애인, 국가보훈자)에 한함	각 1부	
7	4촌 이내 혈족관계 확인서	• 해당자(전문연구요원 전직자)에 한함	1부	

6. 원서접수

접수방법	 채용 홈페이지 주소(https://www.krict.re.kr/recruit/main/index)에서 해당 모집공고 클릭 후 응시원서 작성 제출 - 하단 <지원서 작성> -> 개인정보 수집 및 이용 동의 -> 기초정보 입력 -> 작성 후 최종 제출 * 최종 제출 전까지 우측 상단 <나의 지원>에서 수정 가능(성명·이메일 정보가 일치할 경우만 진행 가능) ** 모든 항목에 '학교명·신체조건·가족관계·출신지역 등' 편견요인을 직·간접적으로 드러내지 않도록 작성 (교육사항/경험 등을 기입할 경우 '학교명'은 *** 처리 요망, 이메일은 학교메일 사용 금지) * 장애인에 한하여 직접방문 및 등기우편으로도 채용서류 접수 가능하며 접수마감은 직접방문의 경우 마감일 12시까지, 등기우편의 경우 채용공고 마감일 도착분까지만 인정 (접수처: 대전광역시 유성구 가정로 141, 한국화학연구원 인재개발실)
접수기간	。 2022.06.23.(목) ~ 2022.07.07.(목) 12:00까지
문 의 처	∘ 이메일(leejay@krict.re.kr) 및 유선(042-860-7796) 문의

7. 기타사항

- 본 채용은「평등한 기회, 공정한 과정을 위한 공공기관 블라인드 채용 가이드라인」을 따름
- 지원서 기재 및 서류 제출 시 착오, 누락 등으로 인한 불이익은 응시자 책임이며, 주요 기재사항이 제출서류와 일치하지 않거나 허위임이 판명될 경우 또는 전형과정 중 부정행위 시 합격을 무효로 함
- 지원서 작성 시 추후 서류로 제출 가능한 사항에 대해서만 기재 가능하며, 외국기관 발행 서류 등은 검증된 서류에 한하여 인정
- 부정합격자(본인 또는 본인과 밀접한 관계가 있는 타인이 채용에 관한 부당한 청탁, 압력 또는 재산상의 이익 제공 등의 부정행위를 한 경우, 해당 부정행위로 인해 채용에 합격한 본인)와 부정한 방법에 의하여 채용전형에 응시한 자의 경우 합격 또는 채용을 취소하고 향후 5년간 응시를 제한함
- 우대/결격사유 확인을 위해 면접 응시자에 한하여 추가 제출서류를 제출하여야 하며, 해당 제출서류는 평가위원에게 제공되지 않음
- 채용서류 반환
- 1. 채용절차의 공정화에 관한 법률 제11조(채용서류의 반환 등)에 따라 채용여부 확정일로부터 15일 이 내에 구직자(확정된 채용대상자는 제외)가 채용서류의 반환을 청구하는 경우에는 본인임을 확인한 후 반환
- 2. 채용 서류 일체는 채용여부 확정일 이후 15일간 보관 후 파기되며 15일 이후 신청하는 경우 반환이 불가함 홈페이지로 제출된 서류 및 제출 요구가 없음에도 자발적으로 제출한 서류의 경우 반환 청구 대상에서 제외
- 3. 반환 청구는 첨부의 반환 청구서 파일을 작성하여 서명 후 담당자 이메일로 신청 반환 청구 접수 이후 14일 이내 관련 서류를 등기우편으로 송부되며 반환 소요비용은 청구인 부담
- 최종합격으로 결정되더라도, 채용 신체검사 결과 부적격자와 연구원 인사규정 제22조(결격사유) 해당자는 합격을 무효로 함
- 채용분야에 적격자가 없는 경우 채용하지 않을 수 있음
- 채용 시 경력산정은 연구원 기준에 따르며, 입사지원 시 누락사항은 반영하지 않음
- 전형단계별 합격자 발표 및 개별 연락사항은 e-mail을 통해 통보되므로 정확히 기재 요망

2022. 06. 23

한국화학연구원장